

IPEX-2 Post Flight Ground Test

Prepared By
Gary Ortiz
for
MICRODYNAMICS WORKSHOP
June 23, 1999

Discussion

- Purpose of the Post Flight Ground Tests
- Test Configuration
- 1- Bay Ground Test
- 9-Bay Truss Ground Test
- Conclusions

Purpose of the Ground Tests: What Can We Learn About Microdynamics Through Modal Testing

Address Post Flight Verification for Truss

Attempt to duplicate on orbit flight data by introducing low level vibration source.

Model Correlation

• Burst Random and produced modal characteristics for finite element model correlation.

Linearity Check

Ascending and Descending Stepped-Sine tests address global linearity of the truss.

Instrument Verification

• Collocated test and flight accelerometers for flight electronics calibration during tests.

Microdynamics

 Provided opportunity to investigate structural snapping by obtaining time histories from thermal loading.

Component Level Testing

Characterized 1- bay structural dynamics as compared to 9-Bay truss.

Test Configuration for 1- Bay and 9-Bay Truss

Signal Processing and Data Acquisition System:

- Utilized IDEAS software for signal processing and analysis
- 64 channel HP VXI for data acquisition

Excitation System:

• Structure excitation was provided by two 5 lb electro-static shakers

Accelerometers:

- Single Bay was instrumented to measure 27 degrees of freedom
- Truss was instrumented to measure 60 degrees of freedom

1-Bay Test Configuration

1-Bay Data Curve Fit

1-Bay Mode Description

Mode Shape Description for 1-Bay Burst Random Tests							
Mode	Freq. (Hz)	Damp (%)	Mode Shape Description				
1	64.5	0.2	Breathing Mode				
2	66.1	0.2	Breathing Mode				
3	71.3	0.1	Breathing Mode				
4	98.3	0.8	1st Bending Mode				
5	100.2	0.8	2nd Bending Mode				
6	122.8	8.0	Torsion Mode				

1-Bay Burst Random Test Modal Properties vs. Force Input

Modal Frequency

Modal Damping

1-Bay Stepped-Sine Test

Curve Fit Results from 1-Bay Stepped-Sine Test						
Mode	Freq.(Hz)	Damp(%)	Mode Shape Description			
1	64.2	0.2	Breathing Mode			
2	67.4	0.4	Breathing Mode			
3	71.4	0.1	Breathing Mode			
4	98.5	1.4	1st Bending Mode			
5	100.8	1.4	2nd Bending Mode			
6	123.6	1.3	Torsion Mode			

1-Bay 1st Breathing Mode at 64.5 Hz

1-Bay 1st Bending Mode at 98.3 Hz

1-Bay Torsion Mode at 122.8 Hz

9-Bay Truss Test Configuration

9-Bay Truss Overview

9-Bay Truss Support Struts

Bay Configuration

9-Bay Truss Mode Description

Description of Truss Modal Test Modes

Mode	Freq (Hz)	Damp (%)	Mode Shape Description
1	12.15	0.94	Transverse Shearing
2	16.31	1.00	Transverse Shearing
3	33,63	0.82	Torsion
4	58.18	0.14	Breathing Mode (Fitting)

Modal Comparisons

			•		
	Test	FEM	On Orbit		
Mode#	Freq.	Freq.	Freg.	Mode shape	
	(Hz)	(Hz)	(Hz.)		
1	12.15	16.30	1	Shear	
2	16.31	19.90	19.90	Shear	
3	33.63	29.78	37.92	Torsion	
4	58.18	54.70	64.91	Breathing (fitting)	

9-Bay Truss Burst Random Test Modal Properties vs. Force Input

Modal Frequency

Modal Damping

9-Bay Truss Stepped Up vs. Stepped Down

9-Bay Truss Data Curve Fit

9-Bay Truss 1st Bending Mode at 12.1 Hz

9-Bay Truss 2nd Bending Mode at 16.3 Hz

9-Bay Truss Torsion Mode at 33.6 Hz

9-Bay 1st Breathing Mode at 58.2 Hz

9-Bay Truss Thermal Snapping

9-Bay Truss Collocated Flight and Test Accelerometers

Conclusions:

Quantification of Microdynamic Behavior

- As input level increases, modal frequencies decrease as modal damping increases; structure appears to become softer due to slipping joints.
- Stepped Sine tests indicated both the 1-bay structure and 9-bay truss are highly linear at low force levels.
- Thermal loading produced structural snapping.
- It was verified that flight instrumentation was reliable based on calibration tests.
- Due to dissimilar boundary conditions, modes from test are lower compared to on orbit and the finite element model predictions.